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and Leo Galamboš‡
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Abstract

This article describes a novel technique for representing plots of stories in com-

puter games and for unfolding stories according to these plots. The technique is based

on Petri Nets. Its main advantages are that 1) it copes well with branching stories,

which 2) can evolve in parallel in 3) large virtual worlds. While the issue of branch-

ing stories has been already studied in literature, the latter two issues have not been

sufficiently addressed yet. The technique has been evaluated on a prototype imple-

mentation, and subsequently used in two serious games Europe 2045 and Karo. Eu-

rope 2045 is an on-line multi-player strategy game aimed at education of high-school

students in economics, politics, and media studies, which is presently evaluated at

high-schools in the Czech Republic. Karo is a storytelling simulation that is intended

to engage students in decision making concerning social relations, and work on it still

continues. While Europe 2045 simulates Europe in a coarse-grained way, Karo fea-

tures a detailed virtual world inhabited by virtual humans. Besides presenting the Petri

Nets modifications used in the prototype and in both of the games, the article details

several scenarios from the games, and on a general level, it discusses the strengths

and weaknesses of implementation of Petri Nets in virtual storytelling applications.
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1 Introduction

The idea of using computer games to support training and learning objectives is more

than 30 years old (de Freitas, 2006). Recent work has explored the potentialities of com-

mercial strategy games and simulations in formal education and their alleged advantages

over classical e-learning and edutainment tools, e.g. Egenfeldt-Nielsen (2005). Indeed,

many of such games have been experimentally integrated to formal curricula in the last

four years. Perhaps the most prominent case studies have been conducted with The Sims

2, Civilization III, and Europe Universalis II (Egenfeldt-Nielsen et al., 2006; Sandford et

al., 2007; Squire, 2004), but other attempts exist as well. The results from these pilots

are promising, but also ambiguous in some aspects, e.g. Squire (2004). Hence, so called

“serious” or “educational” games are starting to achieve increasing amount of attention.

These games are, contrary to commercial games, intentionally developed as educational

tools, which makes their integration into formal education easier. For example, a role-

playing game prototype Global Conflicts: Palestine has been recently evaluated in a Den-

mark high-school with positive outcome (Egenfeldt-Nielsen et al., 2006). Another studies

are being conducted, including FearNot!, an anti-bullying educational game (Aylett et al.,

2005), and Revolution, a multi-player educational role-playing game concerning Ameri-

can War of Independence (Revolution RPG, 2007; Francis, unpublished).

As a part of European funded project “Integration of IT Tools into Education of Hu-

manities” we have developed an educational game Europe 2045 (Brom et al., 2007b), and

are developing a game Karo. Europe 2045 is likely the first on-line multi-player strategy

game worldwide aimed at education of high-school students in economics, politics, and

media studies. Its core constitutes a social-economic simulation, i.e. it models Europe in

a coarse-grained way. Karo is a storytelling simulation that is intended to engage students

in decision making concerning social relations. Contrary to Europe 2045, Karo features a

virtual world inhabited by virtual humans, that is autonomous agents (Wooldridge, 2002)

imitating behaviour of humans embedded into the environment. We emphasise that Eu-

rope 2045 is a fully developed game, which is presently being evaluated by high-school

students, while programming work on Karo still continues.

Importantly, narrative aspects are strong in the both games. The reason for that should

be clear: storytelling has played an important role in humanities education since the ad-

vent of formal schooling (de Freitas, 2006). Stories help to build a learning context,

students can better understand the problematic through them, stories increase their in-

volvement, and consequently their motivation.

Specifying plots of stories and controlling the course of a game in accordance with

these plots is a well known problem (e.g., Aylett, 2000; Louchart and Aylett, 2003). It was

indeed one of the most challenging goals we faced during the development. Essentially,

both games had to be designed in order to meet the following requirements:

a) The story plots to be branching.

b) The episodes to be triggered by various initial conditions depending on the time

and state of the word (including virtual humans in the case of Karo).

c) The virtual world to be very large.

d) The episodes to can happen in parallel. Europe 2045 features more than 20 coun-

tries, which could be played simultaneously, each having defined different episodes.

A prototype scenario developed recently for Karo features about 10 different vir-

tual humans, which are simulated all the time, being located in different parts of the

virtual world.
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e) The technique for specification of the plots to be intuitive enough for a high school

teacher or another user (typically an undergraduate university student of humani-

ties) to be able to design new scenarios for the game.

In our previous work, we investigated Petri Nets as a plot specification technique

(Brom and Abonyi, 2006). We found this technique extremely user-friendly and very

fitting for large virtual words and stories evolving in parallel, contrary to other approaches

described in literature (which have, it must be acknowledged, other advantages for other

kinds of virtual worlds). More or less, advantages of Petri Nets match the requirements

mentioned above. Hence, we have adopted Petri Nets for these games.

This article is a report on this work. The overall goal is to introduce Petri Nets as

a new technique for representing plots in storytelling applications, and to discuss their

applicability. In the whole text, the different perspectives of a designer, who use Petri Nets

as a specification tool, and a programmer, who use it as an architectural underpinning of

the story manager, are emphasised.

We start with introducing Petri Nets in general in Section 2. Section 3 analyses various

methods for representing plots and controlling stories, contrasting them with Petri Nets.

Section 4 provides a formal account of a Petri Nets modification we developed formerly

in Brom et al. (2006). This section is aimed at explaining in depth a particular refinement

of Petri Nets that can be used for storytelling purposes. An example of a prototyped story

is given as well.

Section 5 introduces Europe 2045 and Petri Nets modification used in there, which

differ a bit from the formal model described in Section 4. This part of this article is based

on our work reported in Brom et al. (2007b). In Section 6, Karo is overviewed and its

Petri Nets modification sketched. Since Karo should be regarded rather as a prototype at

present moment, we will visit it relatively briefly here. Nevertheless, the results we gained

so far allow us to conclude that Petri Nets can be scaled for applications featuring virtual

humans. Section 7 discusses the strengths and weaknesses of our method and concludes.

2 Petri Nets

This section gives a brief description of Petri Nets in general. Petri Nets is a specifica-

tion technique frequently used in software engineering. A basic variant of it consists of

containers (or places, represented by a circle: ), tokens (“the pellets”: ), actions (or

transitions, ), and transition function ( ). The containers contain the tokens. If a

sufficient number of tokens is contained in specific containers, an action is triggered. Af-

ter firing an action, the tokens that helped to fire this action are removed, and some new

tokens are generated (see Fig. 1a). Which tokens fire which action and which action gen-

erates tokens to which containers is specified by the transition function (and depicted by

arrows). At one instant, several containers can contain tokens, which allows for concur-

rent triggering of actions. Obviously, a conflict between two applications of the transition

function may appear (see Fig. 1b). Such a conflict can be solved in various ways. For

example, we can choose one of the actions non-deterministically.

This basic kind of Petri Nets can be extended by introducing different types of con-

tainers, tokens, and transition functions. For example, tokens can have a state: such

modification is typically called coloured Petri Nets (the colour meaning the state). For

more thorough introduction to Petri Nets, we recommend the reader to consult Petri Nets

World (2007).
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Figure 1: Petri Nets examples. a) The action generates one token if there is one token in

the upper container and two in the lower container. b) The two actions are in conflict.

2.1 Petri Nets and a Story Manager

In this article, we discuss a particular kind of storytelling applications, that having plots

of stories specified in advance by a designer. Actually, one may also be interested in au-

tomatic generation of stories based only on some pre-specified constraints, see e.g. Reidl

and Young (2006), or in emergence of stories from interaction of autonomous human-like

agents, as discussed in Aylett (2000), but this is not our case for our stories must pre-

cisely fit into the formal curricula (Brom et al. (2007b); note, however, that they still are

branching and can evolve in parallel).

For explanatory reasons, let us view the architecture of the kind of applications we are

discussing as being three-layered. The individual layers stand for a GUI, a simulator of

the physical world, which presents the setting for the story (and possibly is inhabited by

virtual humans), and a story manager (see Fig. 2). Each of the layers is more or less an

autonomous component. The purpose of the GUI and the simulator are obvious. The story

manager holds the representations of definite plot scenarios and a state of the story being

unfolded. The state of the story can be changed based on the plots, and on the state of the

simulated world. Conversely, state of the world can be changed based on its previous state

and the state of the story. Importantly, not all changes of the state of the world are caused

by the story manager! For example, in an application featuring virtual humans, the virtual

humans can be controlled by the simulator most of the time (or they can be autonomous

to some extent), and the story manager can only alter their high-level goals from time

to time, i.e. only influence the virtual world, which is driven by the simulator primarily.

Note, that also a user interaction changes the world (by definition of interaction). Hence,

we can describe the interaction among the user, the world and the story manager by the

following functions:

story next : W × S → S (1)

world next : S ×W × I →W (2)

Here, S is a set of possible states of the story, W is a set of possible states of the world,

and I is a set of possible interactions of the user. The results of the function story next

is “computed” by the story manager, while those of the world next by the simulator.

This notion of a separate storytelling component is actually not new. Various authors

employ it, prescribing it various roles based on the intended features of the final appli-

cation - see e.g. Magerko (2006). Following this architectural metaphor, Petri Nets are

exploited in two ways. First, they present the mechanism for representing story plots, i.e.

the function story next, a specification tool for the purposes of a designer. Second, in

run-time, they also represent the state of the story being unfolded, i.e. s ∈ S. This means,

that they are also the technical underpinnings of the story manager.
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Figure 2: Architecture of a “typical” storytelling application that features a virtual world

simulator and a story manager, which works with pre-specified plots of stories. Note that

by virtual world, we mean both a world inhabited by virtual humans, which is the case of

Karo, and that not inhabited by them, which is the case of Europe 2045.

3 Analyse of Plots Representational Techniques

The issue of generating/controlling stories in games and storytelling applications is notori-

ously known. Most techniques come from games and experimental simulations featuring

human-like actors. This is also a case of Karo, but not Europe 2045. In this game, the

story events are more abstract; they deal with whole populations, with a country economy

etc. However, formally, the problem is very similar in both cases. Also the architectures

of both application matches the schema at Fig. 2. In this section, we analyse several plot

representational techniques, contrasting them with Petri Nets. We remind that our aim is

evolving a story based on pre-specified plots with several requirements detailed in Sec. 1.

3.1 Rule Based Systems

A story manager viewed in an abstract manner as a component computing the function

story next (1) is actually a reactive component that responds to some events by triggering

new events that change the state of the virtual world. Once we have this metaphor, we

can easily come up with an idea of computing this by if-then rules matching a state of the

story and of the world and executing an action in the world. Because of the requirement

on large worlds (c), also large story plots, we argue that using just a list of such if then

rules as a method for specifying plots is not a good idea. The reason is that for large

plots hundreds of rules are needed. A designer that has to write down the rules needs a

methodology, i.e. constraints that would guide him or her in the space of possible sets of

rules that can be written down (see req. e)). A pure rule based system does not posses any

such methodology.

Fortunately, there are several techniques that are a sort of rule based system, which

present such a methodology. One of them is Petri Nets. Another one, which will be

discussed here because it is already used in storytelling, is deterministic finite-state ma-

chines.

3.2 Finite State Machines

A well known branch of techniques for specifying plots are deterministic finite-state ma-

chines (dFSMs) (e.g., Sheldon, 2004; Silva, 2003). The formal specification of a dFSM
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Figure 3: Story plots as dFSMs. The linear plot is on the left, the branching on the right.

constrains a manner of specifying the if-then rules, i.e. it presents the desired method-

ology. Each state of a dFSM represents a story episode, and a transition is a trigger that

detects the end of the episode and starts a next one. Natural advantage of dFSMs is that

they are formal, and yet graphical (Fig. 3), which makes them easily intelligible.

However, a classical dFSMs was not suitable for our purposes, since they cannot cope

with the issues of parallelism (req. d)). On the other hand, non-deterministic FSMs can

cope with it, but they are not easily comprehensible (e)).

Sometimes, so-called branching graphs or branching trees are used in storytelling,

e.g. Sheldon (2004); Gordon (2004). We view them, more or less, as a sort of dFSMs,

with similar advantages and disadvantages. Literally, they are not dFSMs, but describing

subtle differences would be unnecessary for the purposes of this article.

3.3 Beat approach

Both for Europe 2045 and Karo, our aim was to author plots and to keep an unfolding

story as close to one of “optimal stories” as possible. This objective is similar to this of

Mateas (2002). However, his beat approach fits better to the domains of small worlds

featuring virtual humans. We could not find out how to scale his solution to cope with the

parallelism issue, and the large world issue (reqs c, d)).

3.4 HTN planning

In the field of emergent narrative and narrative generation, a planning formalism is fre-

quently used, hierarchical task network planning being the most prominent (Aylett et al.,

2005; Cavazza, 2002; Reidl and Stern, 2006). This technique can cope well with the re-

quirements a), b), c), and d). Actually, it goes far beyond a pure reactive rule based story

evolving in that a planner can perform a look-ahead search. However, HTN planning is

not too friendly for a non-AI expert (req. e)).

To tackle e), one could introduce a “presentation layer” for a formal planning system

to disguise the underlying representation and develop an authoring interface; however,

this is time-consuming activity. In fact, Petri Nets (and dFSMs as well) naturally feature

this presentation layer: as said above, they are a sort of rule based system, and it is this

underlying rule based system, that they innately present in a graphical form.

Since we were interested in pre-specified plots but neither in a pure emergent narra-

tive, nor in automatic story construction, and because of the unintelligibility disadvantage

of the HTN planning, we decided not to use this approach. This does not mean, however,

that for other domains, planning may not be the best option.
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3.5 Petri Nets

Petri Nets have natural comprehensibility advantage of the dFSMs. They are formal, and

yet allow for graphical depiction, which mirrors all of their (or most of their, depending

on the complexity of a particular Petri Nets variant) formal features. Hence, they fit

well as a specification interface between a game designer and a programmer. Indeed,

we were able to use them both in Europe 2045 and Karo. First, they were employed in

an informal manner as a specification tool for the designer, i.e. a tool for specifying the

function story next (1). Second, a rigorous counterpart of this informal specification

tool presented the architectural underpinnings of the story manager developed by our

programmer, i.e. a mechanism for computing the results of this function.

For the story manager, it is important to hold the state of the story, i.e. s ∈ S. How

s and S are represented by Petri Nets? Let us contrast it with the representation of s

and S in a dFSM. For a dFSM, S is a set of its states, and s is the state the machine is

currently in. This actually holds for a Petri Net as well. However, a state of a Petri Net,

i.e. s, is represented by which tokens are in which containers, and hence S is a set of all

possible combinations of allocations of tokens to containers. This is much more flexible

representation, and finally allows us to cope with the parallelism issue.

Petri Nets have been already employed in storytelling. Natkin (2003) used them to

a retrospective analysis of a computer game story. They were also used for prototyping

purposes (Brom and Abonyi, 2006), and for plot monitoring in a simple game (Delmas et

al., 2007). However, to our knowledge, none of these work implemented a story manager

for a real full-fledged game.

4 Petri Nets for Representation of Story Plots

As said in Section 2, Petri Nets are a whole class of specification techniques; many mod-

ifications exist. Not surprisingly, we have found that for purposes of each particular sto-

rytelling application, it is beneficial to develop a particular modification that fits best for

what the application demands. For the explanatory reasons, we proceed now as follows.

We first describe in detail a particular refinement of Petri Nets, based on so-called timed

coloured Petri Nets. In fact, we used this refinement for prototyping purposes formerly,

which allowed us to conclude that Petri Nets are a fruitful technique in the storytelling

domain (Brom and Abonyi, 2006). In Section 5, we describe Europe 2045, and overview

the Petri Nets modification it uses. Note that although our technique was intentionally

designed for storytelling applications featuring virtual humans, neither the prototype, nor

Europe 2045 actually exploit them. However, in Section 6, we introduce Karo, where the

method is really used for controlling a story employing virtual humans.

To set the terminology, we say that a PNA-model is the type of Petri Nets formalised

in this section, and a PNA-plot is a specification of an individual plot by means of the

PNA-model. Sections 5 and 6 then introduce PNB-model and PNC-model respectively.

Every PNA-plot can be loaded from an xml-file by an application called TEST we

developed, which features an abstract story manager for running and verifying PNA-plots.

TEST works as follows: After a PNA-plot is loaded and the simulation started, events

start to occur according to the PNA-plot in an abstract manner. That means that the TEST

computes the story next function (1), but there is no simulator of a virtual world to

compute the world next function (2). The result of this function is to be determined

manually by a user through a check-box like interface in TEST; this mimics the changes

that would be imposed on the world by the simulator or a user interacting with the world
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in case of a full-fledged application.

4.1 Story example

For explanatory reasons, we first introduce a dummy story, whose plot was formalised as

a PNA-plot and evaluated in TEST. The story is a simple fantasy narrative set in a village

in an evening. It is a rather small story, just an episode from a larger tale. There are the

following actors and groups of actors:

• MAGICIAN: a user-actor. She needs a puppet (for whatever reason).

• GUARDS: four bum-bailiffs. One of them is a friend of the magician; he has given

her a note that there will be a puppet theatre coming this evening.

• PUPPET THEATRE: four artists. One of them is a twin of a guy who used to steal

in the village several years ago, was arrested but managed to escape.

• ROBBERS: a band having pilfered in the village for a few weeks.

• VILLAGERS: citizens of the village. Some of them will mistakenly recognise the

twin as his robber-brother.

Two things are going to happen in parallel. First, the robbers are going to pilfer this

evening and the guards will try to capture them. Second, the troupe is going to perform a

piece in a pub, and in the course of the play, some villagers will mistake the twin as his

robber-brother and a brawl will flare up in the pub. Consequently, a fire might start, that

would destroy the theatre and all the puppets.

Story can evolve in several ways. All events occur in a probabilistic manner: it is not

sure whether or not the guards capture the robbers, or even notice them; whether or not

somebody mistakes the twin; and whether or not the fire breaks out.

The magician is allowed to influence the story in the following ways: She can buy a

puppet (before the theatre is reduced to ashes), or steal one in the course of the brawl. If

she helps the artists in the brawl, she will be given a puppet for free, provided that no fire

has broken out.

She can call the guards during the brawl using a spell. In this case, the guards interrupt

the chasing and rush to the pub. This reduces the probability of the fire breaking out

significantly, especially if guards have just caught the robbers. She can also put out the

fire immediately by casting a spell.

A part of the PNA-plot for this story is depicted in Figure 4. The most important

features of the portrayal are described in Section 4.2.

4.2 PNA-model

This section gives the formal description of the PNA-model and describes the most im-

portant features of the graphical representation of the PNA-plot depicted in Figure 4. An

algorithm for driving a story according to a PNA-plot is also presented.

Notice that PNA-plot’s portrayals are informative only; what is important is a back-

ground formal specification. Nevertheless, a designer works only with the graphical spec-

ification and informal textual descriptions; there is no need for him or her to know the

formal delicacies, which must be known, on the other hand, to the programmer. As al-

ready said, it is the programmer whose job is to convert designer’s plot specifications into

the code, and clarify ambiguities that may have appeared.
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Figure 4: The “pub-plot” in the initial state is depicted. Notice that a plot can be much

larger and several PNs can run in parallel. In particular, in our case, the “catching-plot”

is connected to the “pub-plot” on the left (indicated by “. . . ”). This part is not described

here for brevity.
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The PNA-model features following entities: containers (which are places – “the cir-

cles”: , , , ), tokens (which are “the pellets”: ), actions (which are transitions –

“the rectangles”: ) and triggers (more or less, they correspond to a transition function

– to “the arrows”: , ). The purpose of a trigger is to fire an action according to tokens’

location, or to add or to remove tokens from containers.

Tokens. Every token has a name, a colour, age, and a state. For every colour, there

is a set of corresponding states. Actually, a colour is like a type of the token, but for

conventional reasons, we keep the designation colour. Let us denote TALL a set of all

possible tokens, NALL a set of all possible names, BALL a set of all possible colours, and

Sb a set of all possible states for a colour b ∈ BALL.

Then, we say that colouring is a function: β : TALL → BALL – it gives a token’s

colour – and token–status is a function (defined for each colour): σb : TALL → NALL ×
Sb ×N – it gives a token’s name, state, and age; and nothing if the token in question does

not have the colour b. If an Sb is empty, we say that the token is stateless. A token can be

located in a container. The age stands for how long the token is located there. In Fig. 4

only the initial tokens are shown. After the start of the simulation tokens would begin to

appear or could be removed.

Containers. Every container has a name, a type and can be associated with a set of trig-

gers, which are actually if-then rules. Let us denote CALL a set of all possible containers,

YALL a set of all possible types and IALL a set of all possible triggers. Then, we say

that container–status is a function: γ : CALL → NALL × YALL × P(IALL) – it gives a

container’s name, its type, and triggers. A container can contain more than one token in

a given simulation time. We say that containing is a function κ : CALL → P(TALL) – it

provides all tokens located in a given container in a given instant.

A semantic meaning of a token in a container is a denotation either of a state of a

group of actors (i.e., an actor-token) or of a satisfied general precondition (i.e., a prec-

token). In a drawing, containers are denoted according to their triggers and tokens they

can contain as follows:

• : an actor-token & without any trigger,

• : an actor-token & with triggers,

• : a prec-token & without any trigger,

• : a prec-tokens & with triggers.

There are following main token types in the PNA-plot from Fig. 4; italic denotes the

initial state:

• “magician has” (colour m); Sm = {noPuppet ,bought, stolen, given}

• “magician where” (colour i); Si = {inPub, outPub}

• “guard” (colour g); Sg = {notCaught , caught}

• “theatre troupe” (colour t); St = {arriving, inPub,playing,defending,burnt, thankful}

• “villagers”, “robbers” (colour o); So = {}

• a prec-token: “has-called”, “has-recognised” (colour o)
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The meaning is obvious: for example, every “magician has” token represents that

the magician has stolen, or has bought, or has been given a puppet, or does not have it,

respectively. Similarly, the state of “magician where” stands for the magician in the pub

or out of the pub. Notice, that these tokens can be located only in PLAYER container.

Notice also, that a token is not a virtual human itself, it is just a representation of its state

for the purpose of the story management!

Triggers. The most important primitive of the PNA-model is a trigger. A trigger can be

associated with an action (an action trigger) or a container (a container trigger). Basi-

cally, a trigger is an if-p-then-c rule, where p is a precondition and c a consequence, which

is to be performed when p holds. There are four types of triggers (both action triggers and

container triggers).

• A token-generating trigger is a trigger that has a consequence of always adding

some tokens to some containers while not removing any token.

• A token-consuming trigger has a consequence of always removing at least one token

and possibly adding tokens to containers.

• An action-firing trigger neither generates nor removes any tokens, but fires an ac-

tion.

• A conflict-resolving trigger’s precondition tests whether two or more conflicting

actions are to be fired at the same time, and its consequence resolves the conflict.

What actually means a conflict between actions will be explained later.

Actions and triggers. Every action has a name, one action-firing, one token-generating

and a token-consuming trigger, a “ready to fire” flag, and an effect. Essentially, firing of an

action has two steps: first, the “ready to fire” flag is set, second, the action is really fired.

The purpose of this separation is that there may be a conflict between several actions, and

not all of them can fire.

The precondition of every token-generating trigger and every token-consuming trigger

tests whether or not the flag is set. Let us denote AALL a set of all possible actions. Then,

we say that action–status is a function α : AALL → NALL × {0, 1} × I3

ALL – it returns

an action’s name, whether or not its flag is set, and its triggers.

If an action-firing trigger holds, its consequence sets “ready to fire” flag. Then, the

other two triggers can be triggered. Notice the word “can”. In a given instant, more

actions can be ready to fire, but not all of them can be allowed to fire for there can be

a conflict between their token-consuming triggers: it is not possible to remove a token

that has been just removed by another trigger. We decided to solve this “conflict issue”

by introducing conflict-resolving triggers. A purpose of a conflict-resolving trigger is to

detect such a conflict, its consequence is to simply unset the flag of some actions. Finally,

when an action is really allowed to fire, its effect is performed, and its token-generating

and token-consuming triggers are triggered. See Algorithm 1 below for details.1

There is no graphical primitive corresponding to a trigger directly. However, a con-

tainer with a trigger is denoted as or , and an action trigger (action-firing, token-

generating, and token-consuming) is depicted as a set of arrows, each from a container to

1We remark that conflict resolving triggers present a relatively complicated element. We noticed that de-

signers of real scenarios for Europe 2045 and Karo typically specified plots avoiding the conflicts at the first

place; they almost never used these triggers. Hence, we regard the conflict resolving trigger rather as a mean for

having the model theoretically coherent than a way for really solving possible conflicts among actions.
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an action, or vice versa. For example, denotes both an action-firing trigger and

a token-consuming trigger at the same time, meaning “try to fire the action if there is at

least one token in the container” and “consume one token when the action is fired”. An

example of a token generating trigger is (it means “generate one token when the

action is fired”).

Details of a precondition or a consequence of a trigger are indicated schematically

next to an arrow, next to a container, or by a changed shape of the arrow. Precisely, a

precondition can:

• test κ: i.e., whether some containers contain ( ) or do not contain ( ) some to-

kens; test β and σβ : i.e., colouring (< col? >) and token-status (< state? >),

• test simulation time (HH hours),

• compare age (MM minutes) or simulation time (HH hours) to a random value

generated using a given probabilistic distribution ( ),

• test whether a user will alter the simulation somehow (will),

• test whether a trigger has fired n times (n×),

• test whether two or more actions are in a conflict (======).

A consequence of a token-generating trigger can generate a token of a specific colour

and a state. This is indicated as < state >, << X >> or < col > above the arrow.

<< X >> means that the generated token has the same state as the token that has been

just consumed (see, for example, GUARD IN PUB container).

Notice that not all conflicts are always solved in Step 4 – there might exist a conflict

not recognised by any trigger. In this case, the action to execute will be chosen randomly

from the set of the actions in the conflict (Step 6).

4.3 Examples

Now, consider several examples taken from Figure 4. First, focus on the container THE-

ATRE and the action Start parking (in the pub), which is redrawn at Figure 5a. There are

three triggers indicated in the drawing. The first one generates a token “theatre” with ar-

riving state into the container once at about 4 p.m. (Step 7, 8 of Algorithm 1). The second

one is an action-firing trigger. It sets “ready to fire” flag when the token in the container

is at least 30 minutes old (Step 1, 2). The third one is a token-consuming trigger, which

removes “theatre” token when the action fires (Step 5, 6).

The next example concerns with the episode of the theatrical performance (Fig. 5b).

The token-generating trigger of the Play starts action has generated four tokens; two “has-

recognised” into the RECOGNISED? container, one “villagers” into the VILLAGERS

WATCHING container, and one “theatre” with the state playing into the THEATRE con-

tainer. The action-firing trigger of the Struggle starts action tests whether or not there is

a token with the state playing in the container THEATRE, and a token in the container

VILLAGERS, and two tokens in the container RECOGNISED? with the appropriate age.

It is determined randomly for the both tokens, whether or not the token is old enough. If

the action is fired, the next trigger – the token-consuming one of Struggle starts – con-

sumes all four tokens. Notice that all durative episodes are represented in a similar way

using the age of the tokens.

Fig. 5c represents the stealing of a puppet. If the magician is in the pub (denoted as

WHERE: < in? >), and if she does not have a puppet (denoted as HAS: < noPuppet? >),
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Algorithm 1 Unfolding a story in TEST using a PNA-plot.

Input: a PNA-plot.

The algorithm is performed in every time step t.

1. Iaction,t ← all action-firing triggers that fire in time t

2. Perform a consequence for all i ∈ Iaction,t in a random order (i.e., mark the “ready

to fire” flag of the respective actions)

3. Iconflict,t ← all conflict-resolving triggers that fire in time t

4. Perform a consequence for all i ∈ Iconflict,t in a random order (it unsets the “ready

to fire” flag of some of the actions being in conflict; it may include asking a user

for selecting such actions)

5. Iremove,t ← all token-consuming triggers that fire in time t (they test for “ready to

fire”)

6. for each i ∈ Iremove,t (take i in a random order) do

• if all desired tokens can be still removed do:

– perform the consequence of i (it includes removing the tokens)

– if i is an action trigger do perform the effect of the action

• otherwise, if i is an action trigger do unset the “ready to fire” flag

7. Igenerate,t ← all token generating triggers that fire in time t

8. for each i ∈ Igenerate,t (take i in a random order) do

• perform the consequence of i

• if i is an action trigger do unset “ready to fire” flag

Figure 5: a) The theatre container example. b) The theatrical performance example. c)

The stealing of the puppet example. Notice that the container THEATRE is depicted

several times for convenience in 4.
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and if she wants to steal, and if the brawl has already flared up (the state of “theatre” is

defending), she can steal the puppet. Notice that the token “player wants to steal” is gen-

erated according to the choice of the user – this feature is achieved by checking a check

box in the application TEST. Notice also, that from the perspective of the high-level plot,

the action of stealing is instantaneous: it takes no time.

4.4 Summary

The purpose of this section was an explanatory one. We introduced in detail the PNA-

model, on which we evaluated fruitfulness of Petri Nets in storytelling in general. The

evaluation took place on the application TEST we developed that allowed for running

PNA-plots in an abstract manner, i.e. without any virtual world connected to it (Brom and

Abonyi, 2006).

Several things ought to be commented. First, notice that a story can really evolve

in parallel. For example, the skipped “catching plot” part at Fig. 4 is actually unfolded

at the same time as the “theatre in pub” part. Second, notice the level of abstraction of

the events generated from the PNA-plot in Fig. 4. Apparently, the PNA-plot presents a

high-level narrative structure; many low-level events are assumed to be generated by the

simulator of the virtual world, possibly based on the user interaction (see Fig. 2 again).

This gives substantial degree of freedom in possible ways of evolving the story, and this

also presents advantage from the design point of view, because splitting the design part

into specifying a high-level plot and low-level behaviour of virtual humans and objects

allows ones to concentrate their thinking on one problem, without being distracted by the

second one. Additionally, the simulator can use a different representation than the story

manager, not necessarily based on Petri Nets. For example, behaviour of virtual humans

can be represented by means of hierarchical if-then rules (Bryson, 2001; Brom, 2005), or

BDI (Bratman, 1987). The BDI is actually the case of Karo.

Third, there is no conflict-resolving trigger in the PNA-plot discussed: the reason for

this is that conflicts were intentionally avoided during the design of the plot. Forth, all

the properties that are only indicated in the portrayal, such as probabilistic distributions,

must be specified precisely in the xml-file corresponding to the plot. It is the job of the

programmer to create this xml-file, and not the designer’s. This precise xml represen-

tation is to be created from a Petri Nets drawing of a designer and based on his or her

supplementary text.

In the next two sections, we overview the modifications of Petri Nets used in Europe

2045 and Karo. In Section 7, a more general discussion follows.

5 Europe 2045

Europe 2045 is an on-line multiplayer game aimed at education of high-school students

in economics, politics, and media studies (Brom et al., 2007b). The developmental phase

is completed and the game is presently being evaluated. Seven preliminary studies have

been already carried out, each involving about 10 high-school or undergraduate university

students. A pilot evaluation has been conducted on two groups of 34 high-school students

(19 females, 15 males) in Prague, the Czech Republic, in January 2008. The game is

intended to be fully applied in spring 2008.

Europe 2045 contains economical and social model, which simulates population ag-

ing, migration, evolution of the market, transfers of industry and services, changes in

environment, moods of citizens, and a substantial number of other variables describing
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particular states and European Union as a whole (e.g. culture, infrastructure, education,

etc.). The game features three layers of game-play. Each student (1) represents one EU

member state in the game and is responsible for its governmental policies, economical

development, and social issues. Basically, the player governs its state by deciding on the

budget’s priorities. Additionally, in cooperation with other players, (2) he or she is en-

gaged in setting politics of the whole EU. Nevertheless, the essential feature of the game

is that (3) each player faces various simulated scenarios and crises addressing contem-

porary key issues of the unified Europe, including migration, international relations, and

energy independence.

The narrative structure of Europe 2045 serves for three purposes. First, it introduces

new topics and agenda for students’ discussions. Second, unfolding new events in accor-

dance with players’ previous decisions, it serves as a global feedback for the students and

as a method for sharpening the discussion. Both these kinds of events are global, i.e. they

are common for all the players and concern EU and international issues (e.g. conflict in

Darfur has intensified). The third class of events provides individual players with a feed-

back about the results of their previous actions concerning their own states; hence, these

events are local (e.g. citizens in France protest against university fees, or unemployment

in Czech Republic has reached 15%).

The game proceeds in rounds, one round is one game year. An atomic “beat” of

a scenario is called an affair. It is an event that takes place in one round and can be

triggered by players’ actions or results from the economical and social model or affairs

from previous rounds. An affair is communicated to the player via a textual description

in the game newspaper or via a short animation in TV, which is being displayed at the

beginning of every round (news item). In some cases, an affair also has an impact on

the economical and social model, i.e. it influences state of a country or the whole EU.

Typically, an affair can result in increasing the EU budget, increasing the level of pollution

in particular states, crippling agriculture production, etc.

Some affairs introduce issues that require decision to be taken by the players (e.g.

accepting another state’s proposal, sending humanitarian mission to the area of a conflict,

etc.). These decisions are intended to be taken during a discussion, typically in the class

under the teacher’s supervision, and voted through a ballot. One affair often triggers more

ballots, each constituting precisely formulated question (“Do you vote for sending Euro-

pean humanitarian mission to Darfur area?”) with three possible answers (yes/no/abstain).

The ballots chosen by the game designers aim to cover all the main possible solutions usu-

ally proposed by real politics in similar cases. When the answers can not be schematised

to the yes or no option, the ballot contains number (3-4) of more detailed solutions. The

decision chosen by the players influences the economical and social model and the affairs

to be triggered in the next round.

The game offers more different campaigns to be played, each of them focusing on

different problematic (e.g. energy independence, international relations, environment).

For each campaign, specific affairs and a scenario describing relations between them have

to be designed. New campaign also comprises distinctive animations for the TV, articles

for the newspaper, items for the in-game encyclopaedia, teachers manual, and handouts

for students.

The aim of this section is to describe how Petri Nets were modified for the storytelling

purposes in Europe 2045, i.e. to introduce the PNB-model. Also an example of a partic-

ular plot (i.e. a PNB-plot) concerning with “Darfur crisis” scenario will be introduced.
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Figure 6: Screenshots from Europe 2045. left) The interface, through which the player

governs its country. right) The balloting interface.

Figure 7: Architecture of Europe 2045. Notice, how it mimics the abstract architecture

from Fig. 2.

5.1 Technical background of Europe 2045

Technically, the game is a client-server application; the students play the game via the

Internet (Fig. 7). The server part comprises PHP scripts generating the game interface,

the story manager, which is written in PHP as well, and the social-economical simulation,

which is written in Java. Almost all parts of the interface are programmed in Flash (see

Fig. 6). The social-economical simulation features a simplified model of EU economy.

Basically, at the end of each round, this component computes the next state of each coun-

try (i.e. will the quality of infrastructure increase or decrease?), and carries out decisions

in which country to build new factories, mines etc. based on particular variables of the

countries (e.g. environmental tax, quality of environment, how well the infrastructure is

developed etc.). We remark that this simulation does not feature human-like agents.

5.2 PNB-model

The PNB-model is stemming from the PNA-model. It was designed to mirror the features

of stories of Europe 2045 described above. Particularly, the model must have seized the

round-based nature of the game, the affairs, the ballots, and the presentation of news

items. We now describe individual components of the model. Then, we describe how

they are integrated together and introduce the story manager algorithm.
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Actions. The model works with two types of actions: affairs ( ), and news items

( ). Both of them can be started between two rounds by a trigger, as described later.

When an affair is triggered, it can influence the game by its game impact (this is similar

to an effect of an action of the PNA-model). An impact can be for example: “migration to

EU decreases in this round by x”. The result of the impact is computed by the economic

simulator before the next round starts (see Algorithm 2). Contrary to affairs, news items

never have a game impact.

Both kinds of actions can communicate to the player several news items in the next

round, using either the game newspaper, or the game TV. Only an affair can invoke (im-

mediately) one or more ballots about a proposal related to the affair.

When the next round finishes, both affairs and news items can generate a new token to

a specific container (this was a job for token-generating triggers in the PNA-model; both

approaches are equivalent). Fig. 8a depicts an action, which generates one token. In Fig.

8b, there is depicted an affair “Darfur conflict” invoking a ballot about “sending an EU

mission to Darfur” proposal (which in case of agreement generates two tokens, each to a

particular container – see next).

Ballots. In a typical ballot ( ), each student has three possibilities: he or she can

agree, disagree or abstain, but more complicated cases are also allowed. To determine

how a result of a ballot influences the game (i.e. which game impact to apply), a what-

next function is defined for each ballot. Basically, for each return value of a what-next

function we define a game impact (this is again similar to an effect of an action of the

PNA-model). Additionally, every ballot can generate one or more tokens similarly to

actions based on on the result of the what-next function. More detailed description on

what-next function element can be found in Brom et al. (2007b).

Tokens. We employ state-less aging tokens, in contrast to the PNA-model. A token

starts to age after it is generated to a container, but not removed in the next round. The

age is given in the number of rounds the token stays in the container.

Triggers & Containers. Triggers are evaluated at the beginning of each round. The

PNB-model features three types of them. First, we have token-generating triggers. These

are associated with containers, but not with actions as in the case of the PNA-model. Ev-

ery time the condition of such a trigger holds, a new token is generated into the container.

In Europe 2045, we use only the form of “when the round x starts → generate one to-

ken”. In fact, these triggers start the game or schedule the episodes to particular rounds.

A container with a trigger is depicted as , while a container without a trigger as .

Second type of triggers is an action-starting trigger, that joins job of action-firing

and token-removing triggers of the PNA-model (this was regarded as more intuitive for

designers). As we already know, a conflict between two actions may occur (Fig. 8c).

Hence, this trigger only marks its action to be started, and the respective tokens to be

removed. A typical action-starting trigger has the following form: “if there are n tokens

in a particular container & f → mark the desired action”, where f is a function of game

state returning a boolean value (e.g. f can be “is EU budget in this round bigger then x

EUR?”).

To cope with conflicts, we define conflict resolving triggers that unmark one of the

marked actions in the same manner as in the PNA-model. In fact, they have not been used

in real scenarios, remaining a mechanism making the PNB-model theoretically coherent.
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Figure 8: a) A simple net. One token is needed in the upper container to start the news

item, which then generates a token to the bottom container. b) A token-generating trigger

generates a token to Container P3 in the first round (notice 1 next to P3). In fact, this starts

the scenario. Affair 4 invokes Ballot 7 immediately. Between round 1 and 2 and if the

what-next function of Ballot 7 returns “+” (which is in this case when the ballot proposal

has been agreed), two tokens are generated; one to P7a, one to P10. Additionally, a

token-generating trigger generates one token into P10 in the second round regardless of

the result of the ballot. c) If there is both one token in Container 3 and one token in 4, it

is not clear whether to start Action 1 or 2. A conflict resolving trigger must be invoked.

d) News item 1 is started when Condition C1 holds. Affair 2 is started when condition

C2 holds and there is at least one token in Container 4 older than 2 rounds. Note, that

in fact, the overall condition of trigger starting Affair 2 is “C2 & age of token in Cont4

> 2”. If there is a conflict between this trigger and the trigger starting News Item 1, the

conflict-resolving trigger is invoked as in the case (c).
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Figure 9: Overall description of PNB-model given in a UML-like class diagram. Based on

this schema, the story manager in Europe 2045 works. Relations of the “conflict resolving

trigger” are not depicted for clarity.

To sum up; in the PNB-model, we use tokens with aging, but without states (con-

trary to PNA-model), we use two types of actions (news items and affairs), and we can

couple an affair with one or more ballots. We use three types of triggers, which can

have relatively complicated conditions. Tokens can be generated by ballots, actions, and

token-generating trigger.

A game designer specifies the plots graphically at the first place. Additionally, most

entities of the model have a unique ID, which serves as a referencing mechanism to addi-

tional textual description (concerning e.g. conditions of triggers) as well as corresponding

animations and news articles.

During a game, a particular PNB-plot is evaluated between each two consecutive

rounds using Algorithm 2. Theoretically, some difficulties may be encountered in mark-

ing of tokens in Step 2 (for each trigger, we need to mark the tokens of appropriate age

that has not been already marked, which may require searching for an appropriate order-

ing of triggers). Additionally, ordering of actions in Step 4b may matter (the total impact

of “action A after action B” can differ from the total impact of “action B after action A”).

Though these issues are of theoretical interest, we have not tackled them rigorously for

they could be addressed easily in an ad hoc manner even for our largest scenarios (Fig.

10).

Fig. 9 overviews how all the components of the model are integrated together.

5.3 PNB-plot example: Darfur crisis

One of the largest and perhaps the most informative plots of Europe 2045 is Darfur sce-

nario (Fig. 10). For brevity, we will not describe here the whole plot, rather we will

illustrate how the building blocks of the PNB-model work on the plot.
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Algorithm 2 The algorithm of the story manager in Europe 2045.

Notice, that the steps 1-5 are concerned with a round k, while 7-10 with the round k + 1.

1. Evaluate all token-generating triggers and generate tokens based on the results.

2. Evaluate all action-starting triggers and mark the respective actions to be started

and the tokens to be removed.

3. For every token that is marked more than once: trigger the appropriate conflict-

resolving trigger and consequently unmark one or more actions.

4. If:

(a) there is no marked action, then end this scenario.

(b) Otherwise, prepare all the marked actions to be run: generate newspaper &

TV news based on the news items, consider the impact of the affairs, prepare

the ballots of the affairs.

5. Remove all marked tokens, increase the age of remaining tokens.

6. New round:

(a) Run new round. Display the news, and ballots, take the input from the user. . .

(b) End the round.

7. Calculate the results of the ballots & their what-next functions.

8. Generate new tokens based on the run actions and on the what-next functions of the

ballots.

9. Compute the game impacts of the ballots based in their what-next function.

10. Go to 1
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This scenario starts in the first round by an affair communicating via TV that the cri-

sis in Darfur has escalated and invoking four ballot proposals. Based on the results of

the ballots, the crises further develop. The important point is that it can evolve in several

branches at the same time. For example, if students agree both on a form of development

aid (Ballot 8) and a humanitarian aid (Ballot 5), both the affairs “Development aid be-

gins” (8a) as well as “Humanitarian aid begins” (5a) are triggered in the second round.

Additionally, either Affair 10a “Big migration increase”, or Affair 10b “Small migration

increase” is started. Which affair is started depends on conditions 7A and 7B.

Notice that all elements have their ID referring for further textual description. For

example, it is specified in this way that Condition 7A, i.e. the condition of the trigger

starting Action 10a “Big migration increase”, is “if there are less than 3 tokens in P10”,

while the trigger starting 10b wants “at least 3 tokens” (Condition 7B). Notice also, that

Container P10 has a token-generating trigger, which generates one token into P10 in the

second round. This means that even if all the proposals are disagreed, large increase in

migration to EU still occurs.

Similarly, it is specified textually that in the ballot “Lost reaction” (12), students have

three possibilities: to reinforce the mission, to pull out the mission or to ask NATO for

help. To which container a token will be generated depends on the result of the ballot

as specified by Conditions 12A, 12B, and 12C. It is also specified that Ballot 12 has no

game impact, but the affair “Mission failed” (20) has the game impact: “migration to EU

is increased by x”.

The scenario ends in the fourth round by a final series of affairs. However, notice, that

other scenarios can be unfolded in parallel. In the basic campaign of Europe 2045, there

are two additional scenarios of the size of “Darfur”, and several dozens of small scenarios

comprising from one to three actions. The whole campaign lasts 10 rounds (game years).

5.4 Summary

We extended the preliminary model described in Section 4 by presenting the PNB-model,

which was used as a plot specification technique in the full-fledged serious game Europe

2045. Presently, this game features one 10-round, fully developed campaign, which com-

prises about 70 game events (affairs, or news items). This allows us to conclude that in this

section, we demonstrated fruitfulness of Petri Nets in the domain of social-economical se-

rious games.

The plot of the mentioned campaign was actually coded directly in PHP. This helped

us to start quickly, but it also presents a limitation. To facilitate the development process,

we would benefit from a graphical authoring tool, especially because we aimed at creating

a second campaign and several undergraduate humanities students, who do not know PHP,

develop other campaigns as a part of their university course. Developing this tool presents

our future work.

6 Karo

Karo is a simulation featuring virtual humans intended as a serious game for civic. Par-

ticularly, it should help students to understand dynamic of social relationships. Presently,

it should be regarded as a research prototype, not a full-fledged application. Contrary

to Europe 2045, programming work on Karo still continues. Speaking in terms of the

three-layered metaphor introduced in Sec 2.1, the GUI, the simulator as well as the story

manager are finished. However, only one case-study scenario (i.e. the specification of the
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Figure 10: Darfur scenario. The elements of the plot are organised according rounds for

clarity. Container’s ids that are not referred from text above are not depicted. For clarity,

several actions are depicted twice (9a, 20).
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plot and its setting) is implemented. Moreover, this scenario has no educational aspect.

Nevertheless, it showed that Petri Nets can be really scaled as a storytelling technique for

a simulation employing virtual humans. After sketching technical background of Karo,

we describe the case-study scenario and review the differences between the PNA-model

(Sec. 4) and the Petri Nets modification used in Karo, the PNC-model.

6.1 Technical background of Karo

Technically, Karo is built upon Java framework IVE – intelligent virtual environment –

we developed formerly (Brom et al., 2006), which serves as a simulator of virtual worlds.

The IVE features grid worlds only; however, this has been regarded as sufficient for our

purpose. The action selection mechanism of virtual humans is based on BDI architecture

(Bratman, 1987), that is implemented using fuzzy if-then rules. The IVE was intention-

ally designed for simulations of large virtual environments inhabited by tens of virtual

humans. It uses level-of-detail technique for simplifying space and behaviour of objects

and virtual humans at the places unimportant at a given instant (Brom et al., 2007a).

6.2 Narrative in Karo

The narrative in Karo is partly emergent and parallel, very character-oriented and goes

into the detail. Our case-study story contains many actors; some of them being back-

ground characters completely driven by underlying world simulator and never directly

influencing the story (e.g. inhabitants of a village, who seem to have their own lives). On

the other hand, behaviour of main characters can be influenced by the story manager.

We decided to solve “interactive–narrative” tension by limiting the degree of inter-

activity available to a user. We allow the user to participate only by changing emotions,

moods, and relationships of the characters, and by modifying the environment slightly,

e.g. by moving objects. Nevertheless, these small influences can change the outcome of

the story radically. Our working hypothesis is that this approach has a strong educational

potential because it allows a student to perceive that small, seemingly similar actions can

have totally different outcome; however, this issue remains to be investigated.

The case study scenario is a dummy fantasy set taking place in a fictional medieval

town, and in the surrounding rural area. It features seven main characters, and several

background actors.

In the beginning, Anne Greyfox, a maiden, who is the daughter of a local baker,

Bryant, is visited by her friend, Nerys Robertson. After a short conversation Anne and

Nerys decide to go to the Lonely Tree, a romantic place outside the town. Possibly they

are warned about the place by Bryant, which may influence their caution later.

The girls go through the town, finally coming to the house of Aunt Dawson, a good-

hearted old woman. She asks them if they can take a lunch to her son Timmy, a city guard.

After they agree, Jonas, Nerys’ little brother, comes here. He is a spoiled child, fattish

and rude. He tells the girls that he is coming with them. Nerys, depending on her mood,

either ignores him or forbids him to follow them. He, however, heard where the girls are

going, so if he is not allowed to follow them, he decides to go to the Lonely Tree on his

own. He does not know that they are going to Timmy’s watch post first, which is quite a

detour, so he arrives to the Lonely Tree sooner.

Near the Lonely Tree, local villain and murderer, Rob The Robber, is hiding. When

the girls arrive, they see him and naturally he decides to kill them. In the end, the girls

are either alive, and Rob the Robber is dead, or other way round, and also Jonas is either

alive or dead, depending on how the user was influencing the story.
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6.3 PNC-model

The PNC-model is an extension of the PNA-model. Apart from minor modifications,

there are two significant extensions. First, triggers can now test state of the world using

a general pattern matching algorithm. This feature is actually similar to the function f

introduced into the PNB-model (see Sec. 5.2, Triggers & Containers). Hence, a designer

of a plot can specify a condition like “someone is near Jane” with the effect of “putting

token to container X”.

Second, because graphical representations of plots became quite large, larger than

the ones on Fig. 4 and 10, we introduced nesting of Petri Nets. This has been achieved

through adding opening and closing triggers, which based on the state of the world and on

the state of an open net can open or close a subnet. A subnet can also contain opening and

closing triggers, a method for having deep hierarchies. This mechanism not only simpli-

fies design, but also speeds up evaluation, because the closed subnets are not evaluated.

It also prevents a designer to do unintended mistakes by using entities that are not related

with the current part of the plot.

6.4 Summary

We extended the PNA-model described in Section 4 by presenting the PNC-model, which

was used for developing a case-study scenario in Karo game. The main innovation in the

PNC-model is hierarchical nesting of Petri Nets.

While this work is still in progress concerning its educational side and particularly the

claims that “small influences can change the outcome of the story radically” and that this

“has an educational potential”, the experience we gained so far allows as to state that Petri

Nets can be and in fact have been scaled for unfolding stories in an application featuring

virtual humans.

7 Discussion & Conclusion

In this article, we have described a method for specifying branching plots of scenarios

that can evolve in parallel, i.e. in several different places at the same time. The method

is specifically designed to cope with stories being unfolded in large virtual worlds. The

method exploits Petri Nets, which are a technique relatively novel in the field of story-

telling (but see Natkin (2003); Delmas et al. (2007)).

The article proceeded as follows: after discussing related work, we have presented a

formal model for representation of plots in Section 4, so called the PNA-model, and have

introduced an application that allows for prototyping of these plots and evolving stories

in an abstract manner, i.e. without any virtual world simulator. Then, in Section 5 and

6, we have extended this work by presenting the PNB-model and the PNC-model, which

have been used and are being used in serious games Europe 2045 and Karo respectively.

While the PNB-model have demonstrated the practical usefulness of Petri Nets as a plot

representational technique in the domain of serious games, the PNC-model have showed

their scalability for an application featuring virtual humans.

Apart from the ability to represent branching plots that can evolve in parallel, the

strength of Petri Nets is that they are formal and yet can be presented graphically. We

have found them as easily comprehensible by non-IT experts; not only the chief designer

of Europe 2045 does not have IT background, but the technique was also explained to

college students of humanities during a course (during about an hour and half) and they
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were subsequently able to use it to specify their own “toy” campaigns. (However, we

have not carried out a “control test” with another technique; the HTN planning might be

a good candidate.)

Since the Petri Nets have all these strengths at the same time, we favoured them over

deterministic finite state machines (Sheldon, 2004), beat-approach of Mateas (2002), and

HTN planning formalism (e.g., Cavazza, 2002).

The question remains, what are the limitations of the technique. At the beginning, it

must be acknowledged that Petri Nets fit well only for stories that are preset. We also think

that the beat approach is better for controlling stories featuring relatively small virtual

worlds inhabited by (a few) virtual humans – we regard this approach as more flexible in

this domain. Additionally, if one needs a story based on a preset plot, which however do

not evolve in parallel, a deterministic FSM would likely be sufficient.

It must be also stressed that Petri Nets is a branching technique: after all, the author

must specify all the branches in advance. The potential risk of combinatorial explosion

of branches must be avoided by manual “cutting” by the author. It is intriguing to think

whether this problem can be overcame, perhaps by generating parts of Petri Nets automat-

ically, hence empowering the technique with some ideas being exploited in the planning

domain (e.g., Reidl and Young, 2006). This is, however, a pie in the sky.
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